If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180=2x^2
We move all terms to the left:
180-(2x^2)=0
a = -2; b = 0; c = +180;
Δ = b2-4ac
Δ = 02-4·(-2)·180
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*-2}=\frac{0-12\sqrt{10}}{-4} =-\frac{12\sqrt{10}}{-4} =-\frac{3\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*-2}=\frac{0+12\sqrt{10}}{-4} =\frac{12\sqrt{10}}{-4} =\frac{3\sqrt{10}}{-1} $
| -3b+5=7+10b | | 0.8y-0.4+0.18y=0.16y-0.1 | | Nx3+8=35 | | 2x^{5}-14x^{3}+24x=0 | | 180=x-(.2)x | | -2(-3a-8)=1 | | 4(8−2d)= | | 12x-4+11x=90 | | 4n+20=12 | | (5y+35)+14=180 | | (5y+35)=14 | | 5m-12=29 | | 2x-1÷3x+1=0 | | 23=12+p | | X.2/3x-14=16 | | 3.2d-5=5-1.8d | | 7x=26+2x | | (x+40)+(3x+20)=180 | | 3x2–36x=-105 | | (x+40)+(3x+20)=90 | | 11x+12x-4=90 | | 6x(8x+6)=6x-45 | | x+3x+9 =x+4x+7 | | 23/5x=9/15 | | x–10=28 | | 25^x(16^x+1)=6400 | | –2(x+3)=10 | | 2^3^x^+7=16 | | 6x^²+6x-8=0 | | 5(7-m)=15 | | 2(m+1)=24 | | 4y÷2=35 |